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Introduction

• In elastic optical networks (EONs), distance adaptation: trade-off between spectral 
efficiency and the all-optical reach 

- solutions based on different modulation formats: e.g., PM-16QAM and PM-QPSK 
→ such techniques may require transponders supporting multiple modulation 
formats 

• Recently, distance adaptation through code adaptation: code redundancy is tuned 
based on the optical reach (the larger the length the more the redundancy) 

- Code adaptation can be applied with a transponder supporting a single 
modulation format (e.g., PM-QPSK) 
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In this paper

• We demonstrate the concept of code adaptation for distance adaptation considering 
time frequency packing transmission 

• Coding is selected to satisfy quality of transmission (QoT), also considering 
detrimental filtering effects 

• High spectral-efficiency: e.g., 6.6 b/s/Hz with PM-QPSK 
• Code adaption is also hitlessy performed to re-act to the degradation without the 

need of any re-routing



Scenario

 B  
= super-channel bandwidth

 Bi  
sub-carrier bandwidth

• ci = code rate f/b where b − f bits of code are transmitted each f bits of information 
• Code rate (i.e., redundancy) affects the ability to correctly receive the information 

transmitted over an all-optical path, also traversing a certain number of nodes, 
thus considering filters (spectrum selective switches —SSSs). 

• Ri = sub-carrier bit rate: it includes information and coding 
• Super-channel information rate: NxcixRi  

 Super-channel made of N PM-QPSK sub-carriers 



Setting code, sub-carriers, and filters

 Bi  
sub-carrier bandwidth

 B



Setting code, sub-carriers, and filters

• INFORMATION RATE fixed 1Tb/s

 Bi  
sub-carrier bandwidth

 B



Setting code, sub-carriers, and filters

• INFORMATION RATE fixed 1Tb/s
• Ri = sub-carrier bit rate: it includes information and coding

 Bi  
sub-carrier bandwidth

 B



Setting code, sub-carriers, and filters

• INFORMATION RATE fixed 1Tb/s
• Ri = sub-carrier bit rate: it includes information and coding
  Fixed by electronics

 Bi  
sub-carrier bandwidth

 B



Setting code, sub-carriers, and filters

• INFORMATION RATE fixed 1Tb/s
• Ri = sub-carrier bit rate: it includes information and coding
  Fixed by electronics
• Bi Fixed

 Bi  
sub-carrier bandwidth

 B



Setting code, sub-carriers, and filters

• INFORMATION RATE fixed 1Tb/s
• Ri = sub-carrier bit rate: it includes information and coding
  Fixed by electronics
• Bi Fixed
• code varies with the path  Bi  

sub-carrier bandwidth

 B



Setting code, sub-carriers, and filters

• INFORMATION RATE fixed 1Tb/s
• Ri = sub-carrier bit rate: it includes information and coding
  Fixed by electronics
• Bi Fixed
• code varies with the path

• increasing redundancy decreases information rate of 
each sub-carriers

 Bi  
sub-carrier bandwidth

 B



Setting code, sub-carriers, and filters

• INFORMATION RATE fixed 1Tb/s
• Ri = sub-carrier bit rate: it includes information and coding
  Fixed by electronics
• Bi Fixed
• code varies with the path

• increasing redundancy decreases information rate of 
each sub-carriers

 Bi  
sub-carrier bandwidth

 B



Setting code, sub-carriers, and filters

• INFORMATION RATE fixed 1Tb/s
• Ri = sub-carrier bit rate: it includes information and coding
  Fixed by electronics
• Bi Fixed
• code varies with the path

• increasing redundancy decreases information rate of 
each sub-carriers

→ select N sub-carriers to guarantee 1Tb/s information rate

 Bi  
sub-carrier bandwidth

 B



Setting code, sub-carriers, and filters

• INFORMATION RATE fixed 1Tb/s
• Ri = sub-carrier bit rate: it includes information and coding
  Fixed by electronics
• Bi Fixed
• code varies with the path

• increasing redundancy decreases information rate of 
each sub-carriers

→ select N sub-carriers to guarantee 1Tb/s information rate
• B=NxBi

 Bi  
sub-carrier bandwidth

 B



Setting code, sub-carriers, and filters

• INFORMATION RATE fixed 1Tb/s
• Ri = sub-carrier bit rate: it includes information and coding
  Fixed by electronics
• Bi Fixed
• code varies with the path

• increasing redundancy decreases information rate of 
each sub-carriers

→ select N sub-carriers to guarantee 1Tb/s information rate
• B=NxBi

• B≤mx12.5GHz

 Bi  
sub-carrier bandwidth

 B



Setting code, sub-carriers, and filters

• INFORMATION RATE fixed 1Tb/s
• Ri = sub-carrier bit rate: it includes information and coding
  Fixed by electronics
• Bi Fixed
• code varies with the path

• increasing redundancy decreases information rate of 
each sub-carriers

→ select N sub-carriers to guarantee 1Tb/s information rate
• B=NxBi

• B≤mx12.5GHz
• m must be selected considering filtering effects
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Summary: code ➞ number of carriers ➞ super-channel bandwidth ➞ ITU-T m
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Measurements

• 1Tb/s information rate 
• Error-free transmission after decoding 
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• Monitoring of the super-channel
• Super-channel QoT is degraded (e.g., due to amplifier aging) → monitoring reveals 

QoT degradation
• Code is adapted in hitless way

• WHAT is MONITORED? 
Symbol VARIANCE
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Relation between variance and OSNR

ci=5/6
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Demonstration of code adaptation upon soft-failure



Demonstration of code adaptation upon soft-failure



Demonstration of code adaptation upon soft-failure

• RX reveals OSNR degradation through variance increase and informs TX



Demonstration of code adaptation upon soft-failure

• RX reveals OSNR degradation through variance increase and informs TX
• TX continues to use the old code and, with a Preamble of 3 bits, informs RX of the 

new code



Demonstration of code adaptation upon soft-failure

• RX reveals OSNR degradation through variance increase and informs TX
• TX continues to use the old code and, with a Preamble of 3 bits, informs RX of the 

new code
• After, TX starts transmitting with the new code



Demonstration of code adaptation upon soft-failure

• RX reveals OSNR degradation through variance increase and informs TX
• TX continues to use the old code and, with a Preamble of 3 bits, informs RX of the 

new code
• After, TX starts transmitting with the new code



Demonstration of code adaptation upon soft-failure

• RX reveals OSNR degradation through variance increase and informs TX
• TX continues to use the old code and, with a Preamble of 3 bits, informs RX of the 

new code
• After, TX starts transmitting with the new code
• Hitless code-adaptation without performing complex and time- consuming re-

synchronization procedures (e.g., as in the case of modulation format adaptation) is 
demonstrated



Conclusions

• Distance adaptation is demonstrated in EONs with proper selection of code 
• Filtering effects must be considered 
• Hitless code adaptation is demonstrated to re-act against soft-failures: 

• no re-routing, no change of modulation format 
• Failure monitoring is enabled by variance monitoring
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