Code-adaptive Transmission Accounting for Filtering Effects in EON

G. Meloni, L. Potì, N. Sambo, F. Fresi, F. Cavaliere

ONDM 2015
• In elastic optical networks (EONs), **distance adaptation**: trade-off between spectral efficiency and the all-optical reach
 - solutions based on different modulation formats: e.g., PM-16QAM and PM-QPSK
 → such techniques may require transponders supporting multiple modulation formats
• Recently, distance adaptation through **code adaptation**: code redundancy is tuned based on the optical reach (the larger the length the more the redundancy)
 - Code adaptation can be applied with a transponder supporting a single modulation format (e.g., PM-QPSK)
Introduction

• In elastic optical networks (EONs), **distance adaptation**: trade-off between spectral efficiency and the all-optical reach
 - solutions based on different modulation formats: e.g., PM-16QAM and PM-QPSK
 → such techniques may require transponders supporting multiple modulation formats

• Recently, distance adaptation through **code adaptation**: code redundancy is tuned based on the optical reach (the larger the length the more the redundancy)
 - Code adaptation can be applied with a transponder supporting a single modulation format (e.g., PM-QPSK)

In this paper

• We demonstrate the concept of code adaptation for distance adaptation considering time frequency packing transmission
• Coding is selected to satisfy quality of transmission (QoT), also considering detrimental **filtering effects**
• **High spectral-efficiency**: e.g., 6.6 b/s/Hz with PM-QPSK
• Code adaption is also hitlessy performed to re-act to the degradation without the need of any re-routing
Scenario

\[B_i \text{ sub-carrier bandwidth} \]

Super-channel made of \(N \) PM-QPSK sub-carriers

\[B = \text{super-channel bandwidth} \]

- \(c_i = \text{code rate} \ f/b \) where \(b - f \) bits of code are transmitted each \(f \) bits of information

 - Code rate (i.e., redundancy) affects the ability to correctly receive the information transmitted over an all-optical path, also traversing a certain number of nodes, thus considering filters (spectrum selective switches —SSSs).

- \(R_i = \text{sub-carrier bit rate} \): it includes information and coding

- Super-channel \textbf{information rate}: \(N \text{xc}_i \times R_i \)
Setting code, sub-carriers, and filters

B_i
sub-carrier bandwidth

B

Diagram showing sub-carrier bandwidth and overall bandwidth (B).
Setting code, sub-carriers, and filters

- INFORMATION RATE fixed 1Tb/s
Setting code, sub-carriers, and filters

- INFORMATION RATE fixed 1Tb/s
- $R_i =$ sub-carrier bit rate: it includes information and coding
Setting code, sub-carriers, and filters

- INFORMATION RATE fixed 1Tb/s
- $R_i =$ sub-carrier bit rate: it includes information and coding
 Fixed by electronics

![Diagram showing sub-carrier bandwidth B_i and total bandwidth B]
• INFORMATION RATE fixed 1Tb/s
• \(R_i \) = sub-carrier bit rate: it includes information and coding
 Fixed by electronics
• \(B_i \) Fixed

\(B_i \)
sub-carrier bandwidth

\(B \)
Setting code, sub-carriers, and filters

- INFORMATION RATE fixed 1Tb/s
- \(R_i \) = sub-carrier bit rate: it includes information and coding
 Fixed by electronics
- \(B_i \) Fixed
- code varies with the path
• INFORMATION RATE fixed 1Tb/s
• $R_i =$ sub-carrier bit rate: it includes information and coding
 Fixed by electronics
• B_i Fixed
• code varies with the path
 • increasing redundancy decreases information rate of each sub-carriers
Setting code, sub-carriers, and filters

- INFORMATION RATE fixed 1Tb/s
- $R_i =$ sub-carrier bit rate: it includes information and coding
 - Fixed by electronics
- B_i Fixed
- code varies with the path
 - increasing redundancy decreases information rate of each sub-carriers
Setting code, sub-carriers, and filters

- INFORMATION RATE fixed 1Tb/s
- $R_i =$ sub-carrier bit rate: it includes information and coding
 Fixed by electronics
- B_i Fixed
- code varies with the path
 - increasing redundancy decreases information rate of each sub-carriers
 → select N sub-carriers to guarantee 1Tb/s information rate
Setting code, sub-carriers, and filters

- INFORMATION RATE fixed 1Tb/s
- $R_i =$ sub-carrier bit rate: it includes information and coding
 Fixed by electronics
- B_i Fixed
- code varies with the path
 - increasing redundancy decreases information rate of each sub-carriers

→ select N sub-carriers to guarantee 1Tb/s information rate
- $B=NB_i$
Setting code, sub-carriers, and filters

- INFORMATION RATE fixed 1Tb/s
 - \(R_i \) = sub-carrier bit rate: it includes information and coding
 - Fixed by electronics
- \(B_i \) Fixed
- code varies with the path
 - increasing redundancy decreases information rate of each sub-carriers

→ select \(N \) sub-carriers to guarantee 1Tb/s information rate
- \(B = N \times B_i \)
- \(B \leq mx12.5\text{GHz} \)
Setting code, sub-carriers, and filters

- INFORMATION RATE fixed 1Tb/s
- $R_i =$ sub-carrier bit rate: it includes information and coding

 Fixed by electronics
- B_i Fixed
- code varies with the path
 - increasing redundancy decreases information rate of each sub-carriers

→ select N sub-carriers to guarantee 1Tb/s information rate
- $B=NB_i$
- $B \leq mx12.5GHz$
 - m must be selected considering filtering effects
Such code assures acceptable QoT on one hop path. ITU-T m defines the switched bandwidth: $B \leq mx12.5\text{GHz}$
Example

Such code assures acceptable QoT on one hop path.
ITU-T m defines the switched bandwidth: $B \leq mx12.5\text{GHz}$
Such code assures acceptable QoT on one hop path. ITU-T m defines the switched bandwidth: $B \leq mx12.5\text{GHz}$

One hop more: → more code → higher N → higher B
Such code assures acceptable QoT on one hop path.
ITU-T m defines the switched bandwidth: $B \leq mx12.5GHz$

One hop more: \rightarrow more code \rightarrow higher N
\rightarrow higher B
Such code assures acceptable QoT on one hop path.
ITU-T m defines the switched bandwidth:
$B \leq mx12.5\text{GHz}$

One hop more: \rightarrow more code \rightarrow higher N
\rightarrow higher B

One hop more: \rightarrow same code is fine
$+ \text{enlarge filters to avoid filtering effects}$
Such code assures acceptable QoT on one hop path. ITU-T m defines the switched bandwidth: $B \leq mx12.5GHz$

One hop more: → more code → higher N → higher B

One hop more: → same code is fine + enlarge filters to avoid filtering effects

Summary: code \rightarrow number of carriers \rightarrow super-channel bandwidth \rightarrow ITU-T m
Time frequency packing
Time frequency packing

- TFP [a] is faster than Nyquist

Time frequency packing

• TFP [a] is faster than Nyquist
 • Sub-carriers are filtered beyond the Nyquist limit, thus introducing inter-symbol interference (ISI)

Time frequency packing

- TFP [a] is faster than Nyquist
 - Sub-carriers are filtered beyond the Nyquist limit, thus introducing inter-symbol interference (ISI)
 - example: 160Gb/s PM-QPSK in 20GHz instead of in 40GHz

Time frequency packing

- TFP [a] is faster than Nyquist
 - Sub-carriers are filtered beyond the Nyquist limit, thus introducing inter-symbol interference (ISI)
 - Example: 160Gb/s PM-QPSK in 20GHz instead of in 40GHz
- High spectral efficiency with PM-QPSK

Time frequency packing

• TFP [a] is faster than Nyquist
 • Sub-carriers are filtered beyond the Nyquist limit, thus introducing inter-symbol interference (ISI)
 • example: 160Gb/s PM-QPSK in 20GHz instead of in 40GHz
• High spectral efficiency with PM-QPSK
• No DAC is required since we avoid multi-level formats such as PM-16QAM

Time frequency packing

- TFP [a] is faster than Nyquist
 - Sub-carriers are filtered beyond the Nyquist limit, thus introducing inter-symbol interference (ISI)
 - example: 160Gb/s PM-QPSK in 20GHz instead of in 40GHz
- High spectral efficiency with PM-QPSK
- No DAC is required since we avoid multi-level formats such as PM-16QAM
- Inter-symbol interference imposes sequence detector as BCJR

• TFP [a] is faster than Nyquist
 • Sub-carriers are filtered beyond the Nyquist limit, thus introducing inter-symbol interference (ISI)
 • example: 160Gb/s PM-QPSK in 20GHz instead of in 40GHz
• High spectral efficiency with PM-QPSK
• No DAC is required since we avoid multi-level formats such as PM-16QAM
• Inter-symbol interference imposes sequence detector as BCJR
• Coding is selected to account for ISI and other impairments

Experimental set up
Experimental set up

[Diagram of experimental setup with components labeled ECL1, ECL3, ECL5, ECL7, ECL9, ECL2, ECL4, ECL6, ECL8, OC, LPF, Q, π/2, PBC, delay, Polarization multiplexing, 2x1 OC, Coherent RX, LOI, real-time scope, DSP, 40km, programmable SSS, POL-S, OBPF, GEF.]
Experimental set up

RECIRCULATING LOOP
EMULATING INTERMEDIATE NODES
Experimental set up
Measurements

- 1Tb/s information rate
- Error-free transmission after decoding
Code adaptation to re-act against signal degradation
Code adaptation to re-act against signal degradation

- Monitoring of the super-channel
• Monitoring of the super-channel
• Super-channel QoT is degraded (e.g., due to amplifier aging) → monitoring reveals QoT degradation
Code adaptation to re-act against signal degradation

- Monitoring of the super-channel
- Super-channel QoT is degraded (e.g., due to amplifier aging) → monitoring reveals QoT degradation
- Code is adapted in hitless way
Code adaptation to re-act against signal degradation

- Monitoring of the super-channel
- Super-channel QoT is degraded (e.g., due to amplifier aging) → monitoring reveals QoT degradation
- Code is adapted in hitless way
Code adaptation to re-act against signal degradation

• Monitoring of the super-channel
• Super-channel QoT is degraded (e.g., due to amplifier aging) → monitoring reveals QoT degradation
• Code is adapted in hitless way

• WHAT is MONITORED?
Symbol VARIANCE
Relation between variance and OSNR

![Graph showing the relation between variance and OSNR.](image)

- **Variance** on the y-axis ranges from 0.00 to 0.16.
- **OSNR [dB]** on the x-axis ranges from 10 to 18.
- The graph indicates a linear relationship where variance decreases as OSNR increases.
- The equation $\frac{c}{i} = \frac{5}{6}$ is shown on the graph, highlighting the relationship between variance and OSNR.
Relation between variance and OSNR

\[c_i = \frac{5}{6} \]

\[c_i = \frac{4}{5} \]
Demonstration of code adaptation upon soft-failure
Demonstration of code adaptation upon soft-failure
Demonstration of code adaptation upon soft-failure

- RX reveals OSNR degradation through variance increase and informs TX
Demonstration of code adaptation upon soft-failure

- RX reveals OSNR degradation through variance increase and informs TX
- TX continues to use the old code and, with a Preamble of 3 bits, informs RX of the new code
Demonstration of code adaptation upon soft-failure

- RX reveals OSNR degradation through variance increase and informs TX
- TX continues to use the old code and, with a Preamble of 3 bits, informs RX of the new code
- After, TX starts transmitting with the new code
Demonstration of code adaptation upon soft-failure

- RX reveals OSNR degradation through variance increase and informs TX
- TX continues to use the old code and, with a Preamble of 3 bits, informs RX of the new code
- After, TX starts transmitting with the new code
Demonstration of code adaptation upon soft-failure

• RX reveals OSNR degradation through variance increase and informs TX
• TX continues to use the old code and, with a Preamble of 3 bits, informs RX of the new code
• After, TX starts transmitting with the new code
• Hitless code-adaptation without performing complex and time-consuming re-synchronization procedures (e.g., as in the case of modulation format adaptation) is demonstrated
Conclusions

• Distance adaptation is demonstrated in EONs with proper selection of code
• Filtering effects must be considered
• Hitless code adaptation is demonstrated to re-act against soft-failures:
 • no re-routing, no change of modulation format
• Failure monitoring is enabled by variance monitoring

This work was supported by the EC through the Horizon 2020 ORCHESTRA project (grant agreement 645360).

Optical peRformance monitoring enabling dynamic networks using a Holistic cross-layEr, Self-configurable Truly flexible appRoAch