

Code-adaptive Transmission Accounting for Filtering Effects in EON

G. Meloni, L. Potì, <u>N. Sambo</u>, F. Fresi, F. Cavaliere

ONDM 2015

Introduction

- In elastic optical networks (EONs), distance adaptation: trade-off between spectral efficiency and the all-optical reach
 - solutions based on different modulation formats: e.g., PM-16QAM and PM-QPSK
 → such techniques may require transponders supporting multiple modulation formats
- Recently, distance adaptation through code adaptation: code redundancy is tuned based on the optical reach (the larger the length the more the redundancy)
 - Code adaptation can be applied with a transponder supporting a single modulation format (e.g., PM-QPSK)

Introduction

- In elastic optical networks (EONs), distance adaptation: trade-off between spectral efficiency and the all-optical reach
 - solutions based on different modulation formats: e.g., PM-16QAM and PM-QPSK
 → such techniques may require transponders supporting multiple modulation formats
- Recently, distance adaptation through code adaptation: code redundancy is tuned based on the optical reach (the larger the length the more the redundancy)
 - Code adaptation can be applied with a transponder supporting a single modulation format (e.g., PM-QPSK)

In this paper

- We demonstrate the concept of code adaptation for distance adaptation considering time frequency packing transmission
- Coding is selected to satisfy quality of transmission (QoT), also considering detrimental filtering effects
- High spectral-efficiency: e.g., 6.6 b/s/Hz with PM-QPSK
- Code adaption is also hitlessy performed to re-act to the degradation without the need of any re-routing

- $c_i = code rate$ f/b where b f bits of code are transmitted each f bits of information
 - Code rate (i.e., redundancy) affects the ability to correctly receive the information transmitted over an all-optical path, also traversing a certain number of nodes, thus considering filters (spectrum selective switches —SSSs).
- \mathbf{R}_i = sub-carrier bit rate: it includes information and coding
- Super-channel information rate: NxcixRi

• INFORMATION RATE fixed 1Tb/s

- INFORMATION RATE fixed 1Tb/s
- \mathbf{R}_i = sub-carrier bit rate: it includes information and coding

- INFORMATION RATE fixed 1Tb/s
- R_i = sub-carrier bit rate: it includes information and coding Fixed by electronics

- INFORMATION RATE fixed 1Tb/s
- R_i = sub-carrier bit rate: it includes information and coding Fixed by electronics
- **B**_i Fixed

- INFORMATION RATE fixed 1Tb/s
- R_i = sub-carrier bit rate: it includes information and coding Fixed by electronics
- **B**_i Fixed
- code varies with the path

- INFORMATION RATE fixed 1Tb/s
- R_i = sub-carrier bit rate: it includes information and coding Fixed by electronics
- **B**_i Fixed
- code varies with the path
 - increasing redundancy decreases information rate of each sub-carriers

- INFORMATION RATE fixed 1Tb/s
- R_i = sub-carrier bit rate: it includes information and coding Fixed by electronics
- **B**_i Fixed
- code varies with the path
 - increasing redundancy decreases information rate of each sub-carriers

- INFORMATION RATE fixed 1Tb/s
- R_i = sub-carrier bit rate: it includes information and coding Fixed by electronics
- **B**_i Fixed
- code varies with the path
 - increasing redundancy decreases information rate of each sub-carriers
- \rightarrow select N sub-carriers to guarantee 1Tb/s information rate

- INFORMATION RATE fixed 1Tb/s
- R_i = sub-carrier bit rate: it includes information and coding Fixed by electronics
- B_i Fixed
- code varies with the path
 - increasing redundancy decreases information rate of each sub-carriers
- \rightarrow select N sub-carriers to guarantee 1Tb/s information rate
- B=NxB_i

- INFORMATION RATE fixed 1Tb/s
- R_i = sub-carrier bit rate: it includes information and coding Fixed by electronics
- **B**_i Fixed
- code varies with the path
 - increasing redundancy decreases information rate of each sub-carriers
- \rightarrow select N sub-carriers to guarantee 1Tb/s information rate
- B=NxB_i
- B≤mx12.5GHz

- INFORMATION RATE fixed 1Tb/s
- R_i = sub-carrier bit rate: it includes information and coding Fixed by electronics
- **B**_i Fixed
- code varies with the path
 - increasing redundancy decreases information rate of each sub-carriers
- \rightarrow select N sub-carriers to guarantee 1Tb/s information rate
- B=NxB_i
- B≤mx12.5GHz
 - m must be selected considering filtering effects

Such code assures acceptable QoT on one hop path. ITU-T *m* defines the switched bandwidth: B≤mx12.5GHz

Such code assures acceptable QoT on one hop path. ITU-T *m* defines the switched bandwidth: B≤mx12.5GHz

Summary: code \rightarrow number of carriers \rightarrow super-channel bandwidth \rightarrow ITU-T *m*

• TFP [a] is faster than Nyquist

- TFP [a] is faster than Nyquist
 - Sub-carriers are filtered beyond the Nyquist limit, thus introducing inter-symbol interference (ISI)

- TFP [a] is faster than Nyquist
 - Sub-carriers are filtered beyond the Nyquist limit, thus introducing inter-symbol interference (ISI)
 - example: 160Gb/s PM-QPSK in 20GHz instead of in 40GHz

- TFP [a] is faster than Nyquist
 - Sub-carriers are filtered beyond the Nyquist limit, thus introducing inter-symbol interference (ISI)
 - example: 160Gb/s PM-QPSK in 20GHz instead of in 40GHz
- High spectral efficiency with PM-QPSK

- TFP [a] is faster than Nyquist
 - Sub-carriers are filtered beyond the Nyquist limit, thus introducing inter-symbol interference (ISI)
 - example: 160Gb/s PM-QPSK in 20GHz instead of in 40GHz
- High spectral efficiency with PM-QPSK
- No DAC is required since we avoid multi-level formats such as PM-16QAM

- TFP [a] is faster than Nyquist
 - Sub-carriers are filtered beyond the Nyquist limit, thus introducing inter-symbol interference (ISI)
 - example: 160Gb/s PM-QPSK in 20GHz instead of in 40GHz
- High spectral efficiency with PM-QPSK
- No DAC is required since we avoid multi-level formats such as PM-16QAM
- Inter-symbol interference imposes sequence detector as BCJR

- TFP [a] is faster than Nyquist
 - Sub-carriers are filtered beyond the Nyquist limit, thus introducing inter-symbol interference (ISI)
 - example: 160Gb/s PM-QPSK in 20GHz instead of in 40GHz
- High spectral efficiency with PM-QPSK
- No DAC is required since we avoid multi-level formats such as PM-16QAM
- Inter-symbol interference imposes sequence detector as BCJR
- Coding is selected to account for ISI and other impairments

Measurements

- 1Tb/s information rate
- Error-free transmission after decoding

• Monitoring of the super-channel

- Monitoring of the super-channel
- Super-channel QoT is degraded (e.g., due to amplifier aging) → monitoring reveals QoT degradation

- Monitoring of the super-channel
- Super-channel QoT is degraded (e.g., due to amplifier aging) → monitoring reveals QoT degradation
- Code is adapted in hitless way

- Monitoring of the super-channel
- Super-channel QoT is degraded (e.g., due to amplifier aging) → monitoring reveals QoT degradation
- Code is adapted in hitless way

- Monitoring of the super-channel
- Super-channel QoT is degraded (e.g., due to amplifier aging) → monitoring reveals QoT degradation
- Code is adapted in hitless way

• WHAT is MONITORED? Symbol VARIANCE

Relation between variance and OSNR

Relation between variance and OSNR

• RX reveals OSNR degradation through variance increase and informs TX

- RX reveals OSNR degradation through variance increase and informs TX
- TX continues to use the old code and, with a Preamble of 3 bits, informs RX of the new code

- RX reveals OSNR degradation through variance increase and informs TX
- TX continues to use the old code and, with a Preamble of 3 bits, informs RX of the new code
- After, TX starts transmitting with the new code

- RX reveals OSNR degradation through variance increase and informs TX
- TX continues to use the old code and, with a Preamble of 3 bits, informs RX of the new code
- After, TX starts transmitting with the new code

- RX reveals OSNR degradation through variance increase and informs TX
- TX continues to use the old code and, with a Preamble of 3 bits, informs RX of the new code
- After, TX starts transmitting with the new code
- Hitless code-adaptation without performing complex and time- consuming resynchronization procedures (e.g., as in the case of modulation format adaptation) is demonstrated

Conclusions

- Distance adaptation is demonstrated in EONs with proper selection of code
- Filtering effects must be considered
- Hitless code adaptation is demonstrated to re-act against soft-failures:
 - no re-routing, no change of modulation format
- Failure monitoring is enabled by variance monitoring

This work was supported by the EC through the Horizon 2020 ORCHESTRA project (grant agreement 645360).

Optical peRformanCe monitoring enabling dynamic networks using a Holistic cross-layEr, Self-configurable Truly flexible appRoAch

email: nicola.sambo@sssup.it

