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Introduction

* In elastic optical networks (EONSs), distance adaptation: trade-off between spectral
efficiency and the all-optical reach

- solutions based on different modulation formats: e.g., PM-16QAM and PM-QPSK
— such techniques may require transponders supporting multiple modulation
formats

» Recently, distance adaptation through code adaptation: code redundancy is tuned
based on the optical reach (the larger the length the more the redundancy)

- Code adaptation can be applied with a transponder supporting a single
modulation format (e.g., PM-QPSK)
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In this paper
» We demonstrate the concept of code adaptation for distance adaptation considering
time frequency packing transmission

» Coding is selected to satisfy quality of transmission (QoT), also considering
detrimental filtering effects

* High spectral-efficiency: e.g., 6.6 b/s/Hz with PM-QPSK

« Code adaption is also hitlessy performed to re-act to the degradation without the
need of any re-routing



Scenario
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‘ Super-channel made of N PM-QPSK sub-carriers

< >

B
= super-channel bandwidth

« ¢i = code rate f/b where b — f bits of code are transmitted each f bits of information

- Code rate (i.e., redundancy) affects the ability to correctly receive the information
transmitted over an all-optical path, also traversing a certain number of nodes,
thus considering filters (spectrum selective switches —SSSs).

- Ri = sub-carrier bit rate: it includes information and coding
« Super-channel information rate: NxcixR;
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« INFORMATION RATE fixed 1Tb/s

« Ri = sub-carrier bit rate: it includes information and coding
Fixed by electronics

* Bi Fixed

* code varies with the path

* increasing redundancy decreases information rate of
each sub-carriers

Bi
sub-carrier bandwidth
+—>

— select N sub-carriers to guarantee 1Tb/s information rate

« B=NxB; B
 BESmx12.5GHz
* m must be selected considering filtering effects
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hop path.
ITU-T m defines the switched bandwidth:
B<mx12.5GHz

(2008

code 5/6
One hop more: — more code — higher N
ts — higher B

i\

code 5/6 . .
One hop more: — same code is fine
te + enlarge filters to avoid filtering effects

Summary: code — number of carriers = super-channel bandwidth = ITU-T m
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Time frequency packing

* TFP [a] is faster than Nyquist

« Sub-carriers are filtered beyond the Nyquist limit, thus introducing inter-symbol
interference (ISI)

« example: 160Gb/s PM-QPSK in 20GHz instead of in 40GHz
 High spectral efficiency with PM-QPSK
* No DAC is required since we avoid multi-level formats such as PM-16QAM

* Inter-symbol interference imposes sequence detector as BCJR
» Coding is selected to account for ISI and other impairments




Experimental set up
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Measurements

* 1Tb/s information rate
* Error-free transmission after decoding
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« Monitoring of the super-channel

« Super-channel QoT is degraded (e.g., due to amplifier aging) — monitoring reveals
QoT degradation

» Code is adapted in hitless way

* WHAT is MONITORED?
Symbol VARIANCE




Relation between variance and OSNR
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Relation between variance and OSNR
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* RX reveals OSNR degradation through variance increase and informs TX

« TX continues to use the old code and, with a Preamble of 3 bits, informs RX of the
new code

« After, TX starts transmitting with the new code

* Hitless code-adaptation without performing complex and time- consuming re-
synchronization procedures (e.g., as in the case of modulation format adaptation) is
demonstrated




Conclusions

* Distance adaptation is demonstrated in EONs with proper selection of code
* Filtering effects must be considered
* Hitless code adaptation is demonstrated to re-act against soft-failures:
* no re-routing, no change of modulation format
* Failure monitoring is enabled by variance monitoring
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