

Telecom Italia TIM CINÌL

Monitoring plane architecture for modern cloud-based networks

N. Sambo¹, A. Di Giglio², A. Pagano², F. Cugini³, P. Castoldi¹

Scuola Superiore Sant'Anna, Pisa, Italy
 TIM
 CNIT, Pisa, Italy

Workshop "Big Data for networking: opportunities, challenges, and requirements", ONDM 2016

• Toward flexible, agile, and programmable cloud-based networks:

- Toward flexible, agile, and programmable cloud-based networks:
 - configurable transmission parameters in transponders at the edge of optical backbone [a,b]

- Toward flexible, agile, and programmable cloud-based networks:
 - configurable transmission parameters in transponders at the edge of optical backbone [a,b]
 - reduction of margins: possibility to have not-considered degradations, e.g. aging $[c,d] \rightarrow$ soft failures (BER degradation) more frequent

- Toward flexible, agile, and programmable cloud-based networks:
 - configurable transmission parameters in transponders at the edge of optical backbone [a,b]
 - reduction of margins: possibility to have not-considered degradations,
 e.g. aging [c,d] → soft failures (BER degradation) more frequent
 - e.g., alien wavelengths from data centers injected in optical backbone

[a] A. Napoli et al., ComMag vol. 53 n. 2, 2015[b] N. Sambo et al., ComMag vol. 53 n. 2, 2015

[c] J.-L. Auge, paper OTu2A.I, OFC 2013[d] Y. Pointurier, invited talk, OFC 2016

- Toward flexible, agile, and programmable cloud-based networks:
 - configurable transmission parameters in transponders at the edge of optical backbone [a,b]
 - reduction of margins: possibility to have not-considered degradations,
 e.g. aging [c,d] → soft failures (BER degradation) more frequent
 - e.g., alien wavelengths from data centers injected in optical backbone
- Operation, Administration, and Maintainance (OAM) are key functionalities to verify Quality of Transmission (QoT) and Quality of Service (QoS)

- Toward flexible, agile, and programmable cloud-based networks:
 - configurable transmission parameters in transponders at the edge of optical backbone [a,b]
 - reduction of margins: possibility to have not-considered degradations,
 e.g. aging [c,d] → soft failures (BER degradation) more frequent
 - e.g., alien wavelengths from data centers injected in optical backbone
- Operation, Administration, and Maintainance (OAM) are key functionalities to verify Quality of Transmission (QoT) and Quality of Service (QoS)
- Control/management: ABNO architecture includes OAM functionalities

[a] A. Napoli et al., ComMag vol. 53 n. 2, 2015[b] N. Sambo et al., ComMag vol. 53 n. 2, 2015

[c] J.-L. Auge, paper OTu2A.I, OFC 2013[d] Y. Pointurier, invited talk, OFC 2016

- Toward flexible, agile, and programmable cloud-based networks:
 - configurable transmission parameters in transponders at the edge of optical backbone [a,b]
 - reduction of margins: possibility to have not-considered degradations,
 e.g. aging [c,d] → soft failures (BER degradation) more frequent
 - e.g., alien wavelengths from data centers injected in optical backbone
- Operation, Administration, and Maintainance (OAM) are key functionalities to verify Quality of Transmission (QoT) and Quality of Service (QoS)
- Control/management: ABNO architecture includes OAM functionalities

This talk will mainly focus on **resiliency**

[a] A. Napoli et al., ComMag vol. 53 n. 2, 2015[b] N. Sambo et al., ComMag vol. 53 n. 2, 2015

[c] J.-L. Auge, paper OTu2A.1, OFC 2013[d] Y. Pointurier, invited talk, OFC 2016

- Toward flexible, agile, and programmable cloud-based networks:
 - configurable transmission parameters in transponders at the edge of optical backbone [a,b]
 - reduction of margins: possibility to have not-considered degradations,
 e.g. aging [c,d] → soft failures (BER degradation) more frequent
 - e.g., alien wavelengths from data centers injected in optical backbone
- Operation, Administration, and Maintainance (OAM) are key functionalities to verify Quality of Transmission (QoT) and Quality of Service (QoS)
- Control/management: ABNO architecture includes OAM functionalities

This talk will mainly focus on **resiliency**

[a] A. Napoli et al., ComMag vol. 53 n. 2, 2015[b] N. Sambo et al., ComMag vol. 53 n. 2, 2015

[c] J.-L. Auge, paper OTu2A.1, OFC 2013[d] Y. Pointurier, invited talk, OFC 2016

Some numbers on data centers

FIG. by STRONGEST D2.1

Specifics of the services, which can be classified as:

- Interactive: delay in RTT below 150ms and jitter below 10ms
- Guaranteed: delay below 400 ms, no specific requirements on jitter (buffering is enough)
- Best effort

 QoS affected by QoT: e.g., packet loss rate (PLR) — thus delay and jitter because of packet retransmission — influenced by bit error rate (BER)

- QoS affected by QoT: e.g., packet loss rate (PLR) thus delay and jitter because of packet retransmission — influenced by bit error rate (BER)
- QoS affected by electronic layer: e.g., delay, jitter influenced by queuing time at the edge router

- QoS affected by QoT: e.g., packet loss rate (PLR) thus delay and jitter because of packet retransmission — influenced by bit error rate (BER)
- QoS affected by electronic layer: e.g., delay, jitter influenced by queuing time at the edge router
- Observation of the optical physical layer (e.g., BER or correlated parameters such as OSNR) is key to prevent PLR increase → an increase of BER should trigger some reaction before PLR increase

- QoS affected by QoT: e.g., packet loss rate (PLR) thus delay and jitter because of packet retransmission — influenced by bit error rate (BER)
- QoS affected by electronic layer: e.g., delay, jitter influenced by queuing time at the edge router
- Observation of the optical physical layer (e.g., BER or correlated parameters such as OSNR) is key to prevent PLR increase → an increase of BER should trigger some reaction before PLR increase
- Observation of the physical layer is not enough: service level parameters should be monitored (delay, PLR, etc.). A worsening of the service performance could be not due to the optical physical layer: e.g., could be due to edge routers

- QoS affected by QoT: e.g., packet loss rate (PLR) thus delay and jitter because of packet retransmission — influenced by bit error rate (BER)
- QoS affected by electronic layer: e.g., delay, jitter influenced by queuing time at the edge router
- Observation of the optical physical layer (e.g., BER or correlated parameters such as OSNR) is key to prevent PLR increase → an increase of BER should trigger some reaction before PLR increase
- Observation of the physical layer is not enough: service level parameters should be monitored (delay, PLR, etc.). A worsening of the service performance could be not due to the optical physical layer: e.g., could be due to edge routers

ABNO architecture includes functional modules controlling and managing networks and services

Application-based Network Operations (ABNO)

IETF RFC 7491

• OAM receiving **alerts** about potential problems

- correlating them
- triggering other components of the ABNO system to take action to preserve or recover the services

Figure 1 : Generic ABNO Architecture

- Alarms are typically managed considering hard failures; soft failures are not considered
- Lack of cross-layer quality parameter correlation
- Several alarms can be generated at different levels in the presence of soft failure

- Alarms are typically managed considering hard failures; soft failures are not considered
- Lack of cross-layer quality parameter correlation
- Several alarms can be generated at different levels in the presence of soft failure
- \rightarrow how to handle a huge amount of alarms especially considering soft-failures that will be more frequent?

- Alarms are typically managed considering hard failures; soft failures are not considered
- Lack of cross-layer quality parameter correlation
- Several alarms can be generated at different levels in the presence of soft failure
- → how to handle a huge amount of alarms especially considering soft-failures that will be more frequent?
- → are common management planes scalable?

- Alarms are typically managed considering hard failures; soft failures are not considered
- Lack of cross-layer quality parameter correlation
- Several alarms can be generated at different levels in the presence of soft failure
- \rightarrow how to handle a huge amount of alarms especially considering soft-failures that will be more frequent?
- → are common management planes scalable?
- \rightarrow can soft/hard-failures or problems determining a service degradation easily localized and identified?

- Alarms are typically managed considering hard failures; soft failures are not considered
- Lack of cross-layer quality parameter correlation
- Several alarms can be generated at different levels in the presence of soft failure
- \rightarrow how to handle a huge amount of alarms especially considering soft-failures that will be more frequent?
- → are common management planes scalable?
- → can soft/hard-failures or problems determining a service degradation easily localized and identified?
- → which reaction? re-routing, more robust transmission?

- Alarms are typically managed considering hard failures; soft failures are not considered
- Lack of cross-layer quality parameter correlation
- Several alarms can be generated at different levels in the presence of soft failure
- \rightarrow how to handle a huge amount of alarms especially considering soft-failures that will be more frequent?
- → are common management planes scalable?
- \rightarrow can soft/hard-failures or problems determining a service degradation easily localized and identified?
- → which reaction? re-routing, more robust transmission?

Need of **data analytics** for **alarm correlation** and **suppression**, fault **localization**, **type of failure** identification, and reaction decision

- Alarms are typically managed considering hard failures; soft failures are not considered
- Lack of cross-layer quality parameter correlation
- Several alarms can be generated at different levels in the presence of soft failure
- \rightarrow how to handle a huge amount of alarms especially considering soft-failures that will be more frequent?
- → are common management planes scalable?
- \rightarrow can soft/hard-failures or problems determining a service degradation easily localized and identified?
- → which reaction? re-routing, more robust transmission?

Need of **data analytics** for **alarm correlation** and **suppression**, fault **localization**, **type of failure** identification, and reaction decision

Proposed hierarchical monitoring architecture aims at providing a way to gather monitoring information coming from different layers and network elements in a scalable way without overloading centralized controllers

- Alarms are typically managed considering hard failures; soft failures are not considered
- Lack of cross-layer quality parameter correlation
- Several alarms can be generated at different levels in the presence of soft failure
- \rightarrow how to handle a huge amount of alarms especially considering soft-failures that will be more frequent?
- → are common management planes scalable?
- \rightarrow can soft/hard-failures or problems determining a service degradation easily localized and identified?
- → which reaction? re-routing, more robust transmission?

Need of **data analytics** for **alarm correlation** and **suppression**, fault **localization**, **type of failure** identification, and reaction decision

Proposed hierarchical monitoring architecture aims at providing a way to gather monitoring information coming from different layers and network elements in a scalable way without overloading centralized controllers

Monitors

- Lightpath (LP) monitors are assumed integrated in the DSP of each lightpath coherent receiver (e.g., pre-FEC BER monitoring)
- Power monitors can be assumed for links and nodes
- Service monitors for PLR, delay, jitter

• Each entity is responsible for specific elements: e.g. a set of lightpaths

- Each entity is responsible for specific elements: e.g. a set of lightpaths
- each layer receives information from down layers
 - correlation
 - actions
 - notifications to the upper layers

- Each entity is responsible for specific elements: e.g. a set of lightpaths
- each layer receives information from down layers
 - correlation
 - actions
 - notifications to the upper layers
- Going up to higher layers, more responsibility

- Each entity is responsible for specific elements: e.g. a set of lightpaths
- each layer receives information from down layers
 - correlation _
 - actions _
 - notifications to the upper _ layers
- Going up to higher layers, more responsibility

- Each entity is responsible for specific elements: e.g. a set of lightpaths
- each layer receives information from down layers
 - correlation
 - actions
 - notifications to the upper layers
- Going up to higher layers, more responsibility

• EX: **LP group level 1:** each box group all the lightpaths starting from the same ingress node

• EX: LP level 0: I per active lightpath

Simulation scenario

- Comparison of two management architectures:
 - i) the proposed **hierarchical** monitoring architecture;
 - ii) a **centralized OAM** receiving all monitoring information and correlating them.
- Soft-failure: performance of a network element such as an amplifier are degraded causing the OSNR decrease of traversing lightpaths → some lightpaths suffer, others not: e.g. OSNR degradation may imply a BER increase over the threshold (thus, generating alarms) or not (not generating alarms)

Soft failure

Conclusions

- Improve correlation for monitored parameters coming from different layers
- Management of soft failures: identification of the fault and localization
- Scalable management plane
- This work enhanced the hierarchical monitoring architecture proposed within the EU ORCHESTRA project
- ABNO OAM Handler functionalities are spread into several hierarchical layers, enabling to confine sets of monitored physical parameters within specific levels in the hierarchy:
 - Scalable solution
- Correlation of different-layer monitored parameters is enabled

ACK: The work has been supported by the ORCHESTRA project.

email: nicola.sambo@sssup.it

[•] LP level 0: | per active lightpath

- LP level 0: I per active lightpath
- LP group level 1: each groups group all the lightpaths starting from the same ingress node

- LP level 0: | per active lightpath
- LP group level 1: each groups group all the lightpaths starting from the same ingress node
- Assuming an amplifier malfunction in link A-B —> alarms generated for the A-B LP and for A-C LP

- LP level 0: | per active lightpath
- LP group level 1: each groups group all the lightpaths starting from the same ingress node
- Assuming an amplifier malfunction in link A-B —> alarms generated for the A-B LP and for A-C LP
- Alarms sent to level 1: by correlating this information, a problem can be identified in the segment A-B.

- LP level 0: | per active lightpath
- LP group level 1: each groups group all the lightpaths starting from the same ingress node
- Assuming an amplifier malfunction in link A-B —> alarms generated for the A-B LP and for A-C LP
- Alarms sent to level 1: by correlating this information, a problem can be identified in the segment A-B.
- Then, LP level 2 can group all the lightpaths whose ingress node belongs to a specific region of the network and so on up to a generic level H.

Monitoring entity

- **Agent** disseminates monitoring information to the upper layer
- Although not shown, the Manager at level *i* is connected to several monitoring entities of the level *i*-1
- **Manager** correlates and processes info coming from agents at the level *i-1*

